
BERLIN
MAINTAINERATI

Session Notes
2019

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

MAINTAINERATI BERLIN 2019
Session Notes

Prepared by the Maintainerati Foundation Board

Copyright © 2020 Stichting Maintainerati Foundation

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

Revision 1, 26 March 2020.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

i

https://creativecommons.org/licenses/by-nc-sa/4.0/

TABLE OF CONTENTS
Session Notes... 1

Avoiding burnout..2
Communication/abuse ...5
How to manage a GitHub repo..7
Licensing / relicensing ...11
Diversity among OSS projects...14
Automating feedback to OSS contributors ...16
Getting almost 100 people started with their first OSS contribution...........18
CI / PR validation...21
Reporting FOSS usage...24
Open source in closed organizations ...25
Issues with issues ..27
Community of advice ...30
Dealing with “I want” and the lack of “I can” or “I will”33
Funding ..36
Non-technical aspects of OSS versus career growth40
GitHub notifications are terrible...43
Contributors ...45
Making contributions more open ..47
GitHub package registry ...49
Life of an OSS contributor + working from home ..50
Being a good OSS citizen...52
Cross-discipline contributors...54
Power of positive feedback ...56
Introducing funding into community-driven projects59
Velocity vs. usability in OSS..61

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

ii

Distributing donations...63
Schooling maintainers & contributors..65
Maintainability: Getting people doing it ..67
OSS project marketing...71

Acknowledgements.. 73
About the Maintainerati Foundation... 74

Contact Us..74
Event Sponsors.. 75

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

iii

SESSION NOTES
This document contains notes from each of the 29 discussion sessions
held at the Maintainerati Open Space in Berlin on 24 May 2019. It is a
companion document to the main report, Maintainerati Berlin—Event
Report, available on the Maintainerati website.

During each of the 29 discussion sessions a dedicated person took notes
using a pen and paper or a computer. The sessions were not audio
recorded. Each session ran for one hour, and was assigned to a
dedicated note-taker whose role was to capture as much of the
conversation as possible. They were also asked to provide us with their
own interpretation of the conversation that took place, thus producing
an initial analysis.

The Research Team then cleaned up the notes to make reading and
understanding them easier. We took care not to change the voice or
intent of attendees’ statements as recorded by the note-taker. As much
as possible we omitted any details that might identify individual
participants. Each summary includes “Takeaways”, observations and
advice given by the season’s attendees.

Each session’s conversation was unconstrained, and often took
unexpected twists and turns, so don’t expect a clear, concise narrative
for each session. Rather, think of these notes as data to be examined
and further analyzed.

We are making these session summaries freely available in the hope
that maintainers, researchers and policy-makers can use them to
better understand the problems faced by communities developing
digital infrastructure. We have provided our own analysis in the Event
Report, but we encourage the open source community to dig deeper on
their own.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

1

https://maintainerati.org/berlin-2019/

Avoiding burnout
This session was one of the most popular ones of the day. The group
discussed what causes burnout and shared tips on how to deal with it,
based on their own experiences. Overall, the attendees were proud of
their projects and wanted them to continue, but many of them had
experienced burnout and were still struggling to achieve life balance.

Why is burnout so common? Attendees mentioned various reasons.
Some felt trapped into maintaining their projects, since people
depended on their leadership for the project to continue. Some found
themselves doing activities they had not anticipated: they got into their
projects through coding, but now spent their time managing their
project. Many enjoyed this new-found management role, but struggled
to meet users’ and contributors’ expectations.

For example, if a maintainer asks someone to “submit a pull request”,
the person being asked might see this as rude. However, no one thinks
twice asking a maintainer to fix a bug in a project that they are
maintaining for free.

There are also technical and cultural issues around communicating the
state of issues and bugs. Historical information is also sometimes lost
as to why things work the way they do. Getting folks to file “good” and
“actionable” issues can be a big challenge. Rude messages and issues
are mentally and emotionally draining.

The sheer volume of work also presents a challenge. There is always
something that desperately needs to be done. Positive input can be very
much welcome, but on the other hand, receiving 1,000 “thank you”
messages also increases workload. Also, the US work culture (50h+/
week) and glorification of workaholics supports burnout.

One problem with running projects is a lack of common knowledge:

“If you don’t create common knowledge it can create a mess.”

One academic project discussed did not practice regular recording of
common knowledge in a central place, and this seemed to be a core
reason for their management problems.

People are concerned that they are rude to people when they defend
their own time by telling them to be more explicit or to make a PR. ButBE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

2

it’s also demotivating if people open issues to update documentation or
report trivial bugs.

There seems to be a constant struggle between keeping one’s sanity by
ignoring or being strict about request and feeling guilty about not
meeting people’s expectations:

“No matter what you do, you’ll always find people who don’t
like it.”

There’s also a difference between “people who just want to use your
stuff” and “people who want to contribute”. One participant mentioned
that he gets requests from big companies “who should know better”
than to ask for so much. Another one mentioned that “academia doesn’t
give back to the community because they don’t have time”.

It can be difficult to let others fix issues because they might miss the
context and evolution of the project and are not familiar with why
something is implemented or behaves in a certain way.

Participants also acknowledge that the whole “issue” terminology has
a negative connotation – it leads to people reporting only broken things
and complaining about missing features. It’s “mentally draining”.

Participants also shared their experiences about going from a
contributor role where they “just wanted to fix something for myself” to
a project manager role, where they have to communicate and align
people. One person described how he found someone to help him out
with a project, and said with a smile on his face, “I can finally go back
to just coding”. But it’s also difficult to find someone you can trust, and
so “you feel like you can’t step away”.

All these things make management difficult and contribute to burnout
and the feeling that “it’s not fun anymore”. The group discussed how
burnout rates are higher among people who became maintainers out of
necessity, because there was nobody else available to take on the role.

Takeaways
• As a maintainer, you need to realize that your time is more valuable
than that of members of the community.

• Have clear guidelines for yourself.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

3

• Collaborate and delegate!

• Don’t be afraid to push back on folks to prevent you from becoming
“the janitor” of all things, rather than an engineer writing code.

• Have your users create your repo cases.

• Maintain a separate work phone.

• Switch from push to pull notifications or disable notifications.

• Keep your maintainer email separate from your personal email.

• You don’t have to fix all the issues. You don’t have to fix ANY of the
issues.

• If people ask you for things, it’s not rude to ask them to put in an
equal amount of work.

• Creating templates for issues and contribution guidelines makes it
emotionally easier to close issues for those that don’t follow the
guidelines / create reproducible steps.

• Use bots to close issues that aren’t properly filled out or to close
issues that are over X days (people <3 StaleBot). People seem to be
more generous with bots than humans, this helps to reduce conflict.

• To help others make meaningful contributions, communicate the
context of the project and why specific decisions were made.

• Don’t hesitate to open issues asking for help, such as in looking for
another maintainer or for help reproducing issues.

• Start new projects with at least one other person.

• Your primary long term job as a maintainer is finding your
replacement. This removes the pressure by giving back a sense of
control.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

4

Communication/abuse
This session had five participants. It started with the host outlining
what they thought of as the three communication channels:

Written communication, which is asynchronous.

Documentation as a stagnant place to reference information.

Synchronous communication, either face to face or online.

There is pressure to do stuff on a lower platform (mobile), which is not
an ideal place to interact.

The first participant who spoke stated that their reason for joining the
conversation was because they had learned that on a number of
instances their way of reacting to contributors was too aggressive.
They learned this when their aggression was called by somebody who
they respected as a contributor.

A second participant in the conversation then shared a story about an
interaction that occurred when they created a repository in an effort to
start a new project. A particular developer on open source projects, who
also happened to be a co-worker, pointed out that they had failed to
sign a license agreement when they started the repository and told
them they needed to do so. The participant saw their co-worker as
being aggressive because they jumped on them while they were in the
process of signing such an agreement. They felt like they were not
given a chance.

The group discussed how written communication is difficult and it
takes effort to frame things and write them out. Documentation can
also sometimes be used as a weapon. Tone can be hard to convey online,
and so sometimes in-person conversations are helpful to identify what
each party meant in a written conversation. However, the participants
in the group disagreed as to what counted as aggression and what did
not. The group also briefly discussed maintainer abuse by contributors.

Attendees noted that GitHub have formalized some common norms,
but attendees raised questions about how effective these are for those
not already familiar with the medium. Responding too quickly can also
be outside of the norms.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

5

Takeaways
• Create a bot to welcome contributors.

• Provide maintainer’s guidelines as well as contributor’s guidelines.
[editor’s note: these do exist, but it seems not everyone is aware of
them, or perhaps people find them inadequate]

• Going over PRs together can help reduce unintended distancing or
gatekeeping tone in code reviews.

• In open source discussions, maintainers should be introspective
about how they are contributing.

• Try not to assume that people know what they are doing: everyone
has to learn sometime.

• On the flip side, it’s also a good idea not to assume that people don’t
know what they are doing: they may not be doing something wrong,
but rather in a different way.

• Perhaps maintainers need to take a lead in educating others.

• Doing PRs one-on-one can save a lot of time. Make use of both
synchronous and planned review time.

• Keep an eye on team size and structure: sometimes the larger the
team the possibility there is a problem.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

6

How to manage a GitHub repo
There were six eager and fresh participants in the first panel of the
day. The key problem they discussed was: How do you manage
repositories?

There was a consensus that handling repositories raises highly
complex issues. They involve some key concerns:

“Who manages it?”

“Who maintains the project?”

“How do you assign permissions to members of the project?”

One important issue that was raised was “organization”. What does it
mean? People were confused about whether the conversation was about
the social act of organizing, as a verb, or the organization’s ways of
working, how they are handling GitHub. The combination of these
various viewpoints is seen in the discussions below.

One problematic feature of a repository is that it is opaque. You cannot
easily see or know who is managing and/or maintaining a project.
There were discussions about having it in an open form instead.

Managerial issues were also discussed. There were competing views
and conversations around wanting open source projects to be more
professional, formal organizations, versus opening responsibility and
ownership to everyone.

Arguments for making open source projects formal and professional
were several.

There are projects with thousands of repositories that have
professional teams that manage them. One of the maintainers shared
the relief that such a set-up gave them: “it’s nice to know that things
won’t break when you have dedicated professional teams to manage
things”.

For those who like professional maintainer teams, the general feeling
is that GitHub’s features are not really optimized for them. For
instance, consistent naming is not optimized, and GitHub hasn’t found
a really good way to structure contribution processes or label them.
They feel there are things that could be done better.BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

7

Participants suggested several arguments for having diffused
leadership and open structures. One maintainer said they didn’t want
to have full responsibility for their project, so they manage the project
by giving ownership and responsibility to everyone. Someone
commented that this was a very anarchist way of managing the
organization. Additionally, making people owners of your organization
could be overwhelming in itself too.

A flexible structure allows people the space to walk away from projects.
One of the key guiding principles is that if you stop having fun
contributing to a project, maybe you should stop working on it.
Participants generally shared the opinion that contributing to a project
should be a positive experience, without guilt.

For example, one of the maintainers shared an experience in which
they had a project open on the repository, disappeared for a while, and
when they came back were extremely apologetic. It turned out that
they had been involved in a serious car accident. The maintainer who
was in the accident felt very strongly about how inadequate the car
accident reason was. All of the participants agreed that the maintainer
should not have felt guilty because they were not able to review a PR.
One should be able to walk away and return freely.

Another idea shared was that a flexible structure is key to keeping your
contributors. An open door policy allows people to remain in the loop,
and also provides the possibility to pop in and out of projects if they feel
burned out or feel a specific task is not for them. They should not feel
guilty when leaving a particular project or moving on.

Barriers from Any Structural Decision Point. Whether one is in favour
of pro or flex structure, someone raised the point that “social barriers
could be removed by using similar ways of maintaining the project, but
it wouldn’t remove the other barriers”. Any choice between a pro or flex
structure could remove some of the barriers, but not others. For
instance, uses of Github within private research groups or by
maintainers as consumers of Github can solve certain barriers, but
also present new ones.

Conflict. A common problem is the presence of conflict of interest and
tension among maintainers of the same organization. There was a
general consensus that there is a need for a system or policy that
empowers members to kick out an individual, even if they were given
permission by a particular group.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

8

Empowerment. There is also a conversation about the context of
empowerment in the submission and review of contributions.

Being granted permission did not make a maintainer automatically
empowered enough to go ahead. They still felt the need for a project
maintainer to review their work, even if the project maintainer was
explicit about the changes.

One solution raised was that being more specific in the documentation
could help people feel they are empowered and are project owners.

The conversation then turned to Github software as a form of
organization. The group discussed UX difficulties. Some of the
maintainers use GitHub Enterprise for internal issues and it really
works for them. For example, one research project uses Enterprise with
groups using the repos in a private space. As a research instrument,
the repository, the maintainers, and the rest of the researchers act as
consumers of the project, but they want to find a better way to have it
be consumed other than GitHub.

There were participants who believe that maintainer profiles should be
public.

There is a distinct advantage to having a maintainer team in a GitHub
organization. It is powerful because then you can automate some of
your work flows insofar as assigning PRs to the maintainer team. A lot
of participants wished they knew that before. Some of the maintainers
in the group were not using maintainer teams, so this information
provided a very big moment of relief for some. Then there was a lot of
discussion around terraform and using it with YAML, which would
include things like the contribution files, discussing profiles, and a
bigger space than a Read Me. Discussants believe that these should be
in the setting of GitHub, as it helps the continuation of the projects.

With the context of a team, some participants discussed the posting of
office hours, putting information in a place that is easily accessible, e.g.
with the terraform, being more open with Read Mes, and having a
maintainer file on how not only to contribute, but also describing the
cadence of your project.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

9

Takeaways
• Github has an opaque repository structure. One proposal was to
have it in an open form so one can easily see who manages and/or
maintains the project.

• Maintainers’ profiles should be public.

• Github settings should include contribution files, discussing
profiles, and a bigger space than a Read Me to help with the
continuation of the projects.

• Github should be optimized for professional maintainer teams: how
to structure contribution processes and labelling them; how to have
consistent naming.

• There must be a policy or system to kick people out, even if they
were granted permission.

• One way to feel more empowered and have project ownership is to be
more specific in the documentation.

• There should be an open door flexible policy in which people can pop
in and out if they feel burned out or feel a specific task is not for
them. They should not feel guilty when leaving a particular project,
returning again to a project or moving on.

• Best practice: posting of office hours.

• Best practice: putting information in a place that is accessible.

• Best practice: being more open with ReadMes.

• Best practice: a maintainer file not just on how to contribute, but
also describing the cadence of the project.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

10

Licensing / relicensing
There were around eight people in this session, including two students
from Scotland and one maintainer of a large infosec project. Of all the
people in the group, four were really engaged, the others were mostly
listening. One participant questioned whether they were (themselves)
actually a maintainer.

The discussion began with starting projects that are open source in the
beginning, but with the possibility of monetizing them in the future
(although the group agreed some projects were not meant to be
monetized).

There was a lot of talk about licensing, especially around the Commons
Clause. The conversation initially was focused by the question of the
pros and cons of Commons Clauses, against other licenses such as GPL
vs. GPL3.

The Commons Clause didn’t seem to be well understood by the
majority of the group. A simple explanation given was that it prevents
companies such as Amazon from monetizing your open source project.
Unlicensed was considered problematic in Europe and not well
understood by the group (you can’t give away your copyright).

A couple of people described it to everyone. They appeared to be the
major contributors overall, with knowledge specialization in specific
licenses such as CLA. To illustrate the Commons clause, one of the
examples they gave was: if you are a large company with one legal
person, almost any license that is not an MIT license is not going to be
usable in your project, especially in Europe. They talked about how
Google doesn’t allow GPL, apart from under rare circumstances.

The group started talking about examples of Amazon monetizing open
source projects in the past. They mentioned the Elastic search project.
There was also lots of talk about GPL versus non-GPL, and how the
MIT license was the best for most circumstances.

The group showed agreement on the interpretation of the commons
clause, but they disagreed on CLA/pushing PRs to projects. There also
appeared to be some disagreement and not much understanding about
what CLEs were.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

11

One of the participants felt very strongly about open source and not
restricting use:

“I want people to use what I write; if they contribute back that’s great.
Not a huge fan of the commons clause. I’d rather more people use it
than fragmenting the user base.”

One person asked a question about licenses and restricting them to
specific industries, or restricting specific industries from using them,
particularly the military. However, the question was raised, “how do
you define the military?” It was observed that this definitional issue
could be a sticking point of how to enforce clauses:

“The trick with clauses is that they’re hard to enforce and
they’re more restrictive than you might think. E.g. how do you
define military—any company that works with the military,
contractor, government agency, school, etc.”

In the group, there was confusion relating to the fact that there are
some licenses that specify countries where licensing is defined/
defended. This was likened it to redlines:

“For my project, we put it so that you don’t sue us, but if you
do…. Represented by a state I live in.”

Takeaways
• A good license to start out with if you perhaps wanted to monetize
your open source project in the future is MIT as it is “just the more
simple one”; you can put CLEN there and possibly change that in
the future. Any non-MIT license is not doable in Europe.

• MIT is a license that’s easy to start with for dual licensing. You
could go with CLA and the possibility of a dual license. Force
corporations to push changes back AGPL.

• A site that does a good job—which is free open source
communities—is fosc.org. It talks about “business”. For example,
how does the license impact business vs. community?

• Sources mentioned to understand the different licenses included
freeopensourcecommunities.org and choosealicense.com. For the
second link, the group noted that there are more license descriptions
than the website shows and yet more esoteric ones are included.BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

12

• JSLINT license means “you’re not allowed to use this project for
evil”.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

13

Diversity among OSS projects
The discussion started off by mentioning Mozilla’s biweekly diversity
and inclusion call. The call is open to everyone and covers topics on how
to be more inclusive and build a more diverse workplace. This involves,
for example, talking about how to create a welcoming environment for
first-time contributors or being mindful about the negative impact of a
meritocratic culture. Examples mentioned were that white men can be
overconfident in their skills or that experience requirements can be
problematic because people judge themselves very differently.

Another example discussed was the [Firefox DevTools Slack] channel.
It uses bots to help with translation or to give a brief introduction to
new people. It also has dedicated channels to provide safe spaces, and
new contributions are celebrated in the main Slack channel to raise
awareness.

The group further discussed documentation and language as
important factors in raising inclusiveness and fostering diversity.

Dr. Anita Sharma was mentioned. She studies contribution guidelines
for OSS projects with an eye on how inclusive they are. Based on her
research, she recommends making sure reviewers don’t nitpick on
grammar, since English isn’t the first language for a lot of people, and
instead either ignore small mistakes and to fix them later or hire an
editor for documentation of heavy projects. It’s also important to keep
documentation language simple and easy to understand for non-native
speakers.

Participants mentioned how helpful emojis can be in daily interactions
and that it’s important to avoid metaphors or things that don’t
translate across languages. Someone also mentioned automatic
toxicity analysis to block comments from going online. On Discourse,
for example, comments flagged as toxic go into a moderation queue.

Besides this, participants agreed that maintainers have the
responsibility to monitor and step in when discussions get too heated,
and to lead by example. In case of conflict, one option could be to
escalate a problem to somebody else who is more experienced in
dealing with conflict. Another option could be to do conflict training.

Other examples discussed were the Kubernetes project which has
dedicated on-boarding sessions for underrepresented groups, RailsBE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

14

girls summer of code and Outreachy. Another recommendation was Vic
Health’s, “Encountering resistance” which has a lot of good info on how
to make change happen.

Takeaways
• Be mindful that experience requirements in job descriptions can be
problematic because people judge themselves differently.

• Be mindful of language:

▪ Use simple language.

▪ Don’t nitpick on grammar.

▪ Use emojis.

▪ Avoid metaphors.

• Keep bikeshedding low, stay pragmatic.

• Create a welcoming environment, especially for new contributors.

• Create safe spaces for underrepresented groups.

• In case of conflict, escalate to someone with more experience if you
feel uncomfortable.

• Lead by example.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

15

Automating feedback to OSS
contributors

The main challenge considered in this session was that people don’t
read contributing guidelines, so they often submit changes that are not
acceptable. When people make open source contributions they may not
follow the contributing guidelines, yet they may take the feedback they
receive personally. Human feedback can feel very confrontational, and
it can make future contributions harder.

This session focused on the question:

“Can we use automation to help prompt users to do this
better?”

The group felt that people respond better when they get feedback on
changes from a bot as opposed to from a human being. The example
provided was that when a linter tells you to use a different style it isn’t
personal, but when a human tells you it can feel personal.

The group also observed that GitHub Checks do a very good job at
enforcing policies because users feel uncomfortable merging changes
when the checks fail. This approach appears to place the onus on the
user to work out how to make their work conform to the guidelines and
perhaps prompts them to read them prior to final submission.

People want to use bots for common tasks like linting, triage, tag
assignments, stale closing, and validating changes, having sufficient
code coverage and unit tests:

• Probot does a good job with a lot of problems.

• Stalebot is popular because users don’t feel like it’s as personal.

• Dependabot does a good job for dependency updates.

• GitHub Actions to bootstrap validations is great.

The group identified that there is still a need for more bots and
automation. The biggest gap identified is the complexity of dealing
with multiple repos in triage flows. They observed that Probot can’t
move issues between different repositories and that there was a need
for more support for triaging with bots.BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

16

When asked, most participants said they had not contributed to the
bots and are able to use them off the shelf. However, they appeared
uncomfortable with changing their core code directly. When asked
whether they were okay with giving a bot write permission, very few
were. Those who did so mostly by creating human-reviewed Pull
Requests (PRs).

The challenge identified by the group was that, unfortunately, bots
can’t do some kinds of validation easily, so humans have a role to play.

Takeaways
• Bots help a lot because human feedback can feel very
confrontational, and this can make future contributions harder.
There are some good bots out there, but ProBot is one of the best for
automating review tasks.

• CI tools shouldn’t be the only validation tool that you use.

• It can be a bit unwelcoming if repos have too many checks. There’s
a balance.

• Most people have not contributed to the bots, and can use them off
the shelf.

• There is a need for more support for triaging with bots.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

17

Getting almost 100 people
started with their first OSS

contribution
The inspiration for this session stemmed from a workshop at one
participant’s university. The workshop was called Open Core.
Freshmen were mentored into understanding how to contribute to
products. The goal was to train contributors in the basic skills of Git
and GitHub. The ladder program initially starts with a template
project, Bootstrap, in which issues are created with particular tasks.

There is no minimum number of PRs; instead, participants have
specific tasks that are assigned to them. Each participant clones the
repo and issues, and works through the issues one at a time, with
different levels of difficulty. They are awarded points for how well they
handled the issue. At the end of the program, participants will have
the experience of contributing to a particular project. The session
discussed how this program can be used to train contributors to
support maintainers.

The following sections are divided into two parts: the program as
contributor training, and how to elevate contributors into maintainers.

Training contributors
The program was trying to solve the problem that most of the students
don’t understand development practices. This program is also an
example of a special program to increase engagement with women who
are minorities in their university.

The discussion then shifted to how contributors can become
maintainers. Two questions were opened: Can this program be used in
an open source maintenance setting? Can this program be used to get
contributors and promote them into maintainers?

Some participants were not clear that the program would achieve these
goals because the emphasis was on skill building and testing their
skills. Two late participants were a little concerned that the program
was a barrier to entry and would scare people off. As a counter, some
argued that this might actually help people feel more comfortableBE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

18

making contributions to the project: they feared many people were
afraid to contribute because of the self-perception that they didn’t have
the right skills.

Other issues were discussed on how to encourage beginners. These
include properly labelling issues and using automation to help set
things up for new beginner contributors. One new attendee indicated
that he has a project with 100,000 users, but he only has 3-4 regular
contributors and no real maintainers besides himself.

The problem he is facing is that he has to do a large-scale refactor, but
doing this means having a strong working knowledge of how the code
works and being committed over time to make the changes, because
you can’t do this sporadically as the refactor goes on because you lose
mental track of where you are. But most of the people involved are
contributing only incrementally. They make a contribution, they come
back in a month and make another contribution, but by that time
things have changed and this creates frustration. To avoid this, he
would rather give them a sense of being invested in the project, rather
than being divested from it.

One participant suggested that awareness is very important to recruit
contributors. He suggested that there should be an awesome list of
projects that need help because frequently a lack of awareness that a
project even exists is itself a barrier to getting contributions. Most
people know about a project if they themselves are users. However,
there are plenty of people out there who are looking to contribute
regardless of the nature of the project.

Challenges to becoming a maintainer
Another topic that was important was moving up into a maintainer
position, besides having simply made lots of contributions to a project.
Two people were involved in this second part, and it felt more like a
lecture than a conversation about the problem. One said that
frequently people put banners on a project if they are looking for
contributors or maintainers to take over, but often those only go on too
late, once burnout has already started, and nobody wants to inherit a
dead project. In fact, there is often no way to contact the maintainer in
that case, because burnt-out maintainers don’t look at the issues. One
suggestion was to have some sort of private messaging system to have
a conversation about signaling your interest or other private issues.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

19

Another asked if money would help contributors move into a
maintainer position. However, the conversation there turned because
money isn’t going to get you contributors, although apparently Kafka
does actually pay people to fix bugs that are on their list. They have a
budget for hiring contractors, but this is not quite the same as having
maintainers.

Takeaways
• To train contributors: a university training program has one
program to teach students how to “do” development practices; also
used to target female minority participation.

• To train contributors: a program similar to the university, rather
than become a barrier to entry, might be a pathway to break
people’s self-perception that they don’t have enough skill to become
contributors.

• To attract beginners: properly labelling issues and using
automation to help set things up for new beginner contributors.

• To upgrade into a maintainer: a type of private messaging system
must be in place to signal interest of another contributor/maintainer
before maintainers drop out of site; traditional project banners
means it is too late in the process.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

20

CI / PR validation
Many projects, regardless of technical stack or area of focus, are facing
challenges around CI/CD. Centralizing on a single CI/CD stack has
been tremendously helpful for various projects, and those that still
have fragmented CI/CD and build systems struggle with scaling up.

Large scale projects, like Kubernetes and Node.js, effectively take a
more liberal approach where the projects that fall under their umbrella
can be more self-selecting about CI/CD systems. This doesn’t
necessarily mean the former statement about centralization on a
single CI/CD system doesn’t apply to these projects, but rather that the
scope of their work has grown beyond a single focus and multiple teams
are working on different projects and problems.

Several maintainers mentioned that they use Jenkins, but that it’s
perhaps not the ideal solution because of the complexity of
maintenance. Nevertheless, people use it because it does its job well
enough.

The group briefly discussed what specifically about setting up and
maintaining CI/CD can be simple, and what can be challenging. They
generally agreed that very basic checks are something that any CI/CD
provider can provide, but running more complex checks is much more
challenging to set up in any current CI/CD tool.

In both the discussion about Jenkins and the discussion comparing
basic/complex checks, a similar point was raised: keeping CI/CD logic
outside of the repos maintainers are working in is vital, and is a
mistake that many of us have learned the hard way. It’s an easy foot
gun, and one that is perhaps not the most obvious to most maintainers
who have not experienced it already.

The discussion then pivoted away from CI/CD systems and focused
more on how maintainers work with their side of the process.

First, the group discussed how to address flaky tests–a problem that
virtually every project seems to have, but which no CI/CD provider
appears to provide any tooling or support for. Participants discussed
the possibility of CI systems providing some kind of marker for
maintainers to mark tests as flaky, but that it is incredibly challenging
given that maintainers don’t have direct input into those systems.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

21

Additionally, the group discussed how maintainers can address and
maintain flaky tests. There seemed to be consensus around having
individuals on a team who can help address this directly, focusing on
maintaining those flaky tests and fixing them, if at all possible. This
also came up again later in this discussion when the group discussed
“optional” tests, which could very much align with this feature. Having
an additional, non-binary outcome for tests is something that projects
at larger scales already have: Kubernetes is one example of this at
scale.

There are many reasons why maintainers would like this kind of
feature, including tests that may not be ready, tests for experimental
features, tests that they want to use to collect information about
specific code, and lowering the barrier to entry for new contributors.

Next, the group had a brief discussion about best practices around bad
code–specifically, building out tests for known bugs so that
maintainers can track that code over time, including regression
tracking once the bugs have been properly patched.

Finally, the group discussed code coverage. Some, but not all, projects
represented use code coverage. Most of the group agreed that in the
context of PRs and CI/CD, failing a build on decreased code coverage is
probably not something we want to focus on, but having an indicator of
whether the coverage has gone up or down is valuable. That said,
individual numbers over long-term intervals can be useful to
understand better how our projects are evolving.

One of the participants asked what we thought the future of CI/CD
was. There were a few different answers that the group found
consensus on:

CI is super bespoke and is very personalized to each project. This
probably can’t/won’t change, and the future needs to address this
rather than forcing a mold.

It would be good to have a standardized pipeline that different CI
providers can build upon. Effectively, make pipelines a commodity that
everyone builds upon.

Supporting multiple operating systems is essential for the future. As
our systems converge on xplat support, this becomes more and more
important. At present, even supporting different distributions for the
same platform is very important and not easy.BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

22

Takeaways
• Centralizing on a CI/CD system is important to maintainability.

• Keeping CI/CD logic outside of core repos is important to
maintainability.

• There’s not enough tooling around flaky tests, and maintainers
could all benefit from additional test criteria beyond pass/fail.

• Building out tests for bugs and edge cases is useful.

• Code Coverage isn’t necessarily useful in the context of individual
PRs, but it is more useful as a metric over time.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

23

Reporting FOSS usage
There were three people present in this session.

The participants noted that we may want to differentiate between
companies that want metrics on their open source projects, versus
independent/community projects. Companies may even want internal
insights for their private repos/projects. So it’s important to identify
different kinds of entities on GitHub and understand their needs as
well as maybe even label them as such: non-profit, university, company,
etc.

Some metrics that are desired would be what versions of the software
are being used (e.g. how many people are on the latest major version,
who isn’t upgraded, why not), smaller granularity (which functions/
APIs are used or not so can make decisions or even deprecate them),
where does a particular library fit within the ecosystem, or even where
something is downloaded from (GitHub directly, package registry,
separate site, proxy, forked repo, etc).

We may need to standardize a workflow to analyze usage (a set data
format), and being able to reproduce results is a baseline, especially for
scientific research. Example: each scientific paper should link to a
corresponding GitHub repo.

GitHub already has data on programming language usage but is
working on framework level data (e.g. for JavaScript, React/Vue/
Angular/etc).

The new used-by feature may be a better signal than stars. It would be
useful to have statistics on the licensing of dependencies, dependency
graphs, and how this relates to funding and even project health.

Identifying/authenticating projects can be difficult. Projects can have
similar names: which one is the official repo and which is a fork?
Knowing the exact versions used may raise privacy/security issues.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

24

Open source in closed
organizations

There are a lot of challenges when a company is engaged in either
creating open source, or using open source software that is created by
another company and managed by a company.

Companies are doing open source for a bunch of reasons, and may be
“Open Source by name, but not by community”. It makes it easier to
hire people when people come in already knowing something about the
product.

There is an incentive to open sourcing projects for PR, marketing, or to
make hiring easier. If you open source something out of self-interest
you may end up simply making the source code available. However,
with only the source available there is a ton of missing context about
previous and ongoing decisions.

When an open source project is maintained by a company and driven
out of a company’s internal resources without those internal resources
being open it can be a huge challenge as the conversations about where
the software is going and decisions being made are all happening on
unavailable media (slack, email, meetings, etc.) at the company that
has open sourced the software. Build infrastructure may also be a
black box, with folks unable to see what has gone wrong, only that
something isn’t working.

What do you do if you are in a closed source environment but have open
source components? What is it like if you are a maintainer on a project
that is open source, but has private infrastructure (like React Native)?

For example, it can be a problem if you can’t see the full CI/CD, and you
know the checks are red, but don’t know which tests are failing.
Alternatively, what do you do if a lot of the conversation takes place on
Slack, and the code is available, but the discussions and context are not
actually available? How do you open this up? You can’t just copy and
paste it.

What if your source code is public by default, so people are watching
you build in real-time, and the source is available, but the plan is not
fully formed, or worse, the project is not a fully formed thought yet and
may not continue?BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

25

For all conversations here, there is information lost or not made
available. Historical / design information may not be not available; for
example, if there are no design documents or architectural decision
records in the repos.

Takeaways
• Innersource is a good step to take for companies looking to open
source in the future, to exercise the muscles in advance of actually
open sourcing something.

• Clear signaling about how an open source project is being run is
something that is tremendously valuable for those choosing to join
an open source community.

• New European laws coming soon will require employers to report on
the hours their employees work to confirm that employees are not
working too long. This will hopefully result in better time tracking
and more deliberate usage of time.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

26

Issues with issues
There were 12 participants in this session. Most projects have a lot of
issues of varying kinds and have no idea how to get through the
backlog. People leverage issues as a way to get help. There is a lot of
automation around issue usage, and this creates a lot of visual noise.
Many issues are invalid, but no one has the guts to say so and close the
issue. Email notifications are broken. How do you keep the issues
relevant and stay on top of them?

To begin, the participants went around the group stating the different
topics that the participants maintained. The maintainers came from a
place of having extremely large projects backed by large companies and
large enterprises, to having small “hobby” projects, as well as ones that
have many contributors. There were also some attendees from
developer tool companies, namely GitHub.

A participant stated that they find it hard to get an overview or bigger
picture. They don’t know how many open issues they have. A
participant asked the group, “Do you think that having too many issues
is not a problem a maintainer should care about?” One maintainer who
responded did not feel they should be concerned. Another maintainer
says they do concern themselves with the number of open issues.

How do you deal with tech support issues? How many people are
having the same issues? If it is one person then you can ignore it. But
if you see it over and over again then you need to address it.

One participant said that they pasted the solution in the error
message, but the users don’t read the errors. There is an expectation
that you should probably help people submit issues. GitHub has made
it so easy to get access to maintainers, and has caused an explosion of
issues being reported.

The participants talked quite a bit about solutions. One maintainer of
a large project suggested to not use issues on GitHub but rather use
them as email notifications. These could be filtered if they were issues
created by the person, or if they were created by somebody else and
mentioned that person, or a specific team.

A second maintainer who worked on a similarly large project
associated with large enterprises mentioned that they cannot go a day
without triaging or they become overwhelmed and burdened.BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

27

A third maintainer mentioned that they do a lot of automation and this
is how they keep their sanity. A question was proposed of whether
having a lot of issues was a problem that maintainers should care
about. One maintainer answered that they have a lot of issues that
they ignore because there are a lot of issues on technical support and
they don’t like to deal with those.

One maintainer who was not the original session host became the clear
leader (they had an OSS Mac library project). They mentioned that
they try to automate themselves out of jobs they don’t want to do. When
you first do open source you feel like you should be writing code, but
when people start to contribute to your project you quickly end up
doing mentorship, technical support or evangelism of your project. This
maintainer suggested the idea of automating themselves out of these
tedious tasks. At this point, others revealed other team structures in
which individuals who like doing tech support or different roles will be
elevated into doing those.

The group wished there was a role in open source where someone could
only be a project manager. Overall there was a sense that nobody has
much experience, and so all they can do is watch the problem. As a
participant noted:

“All that we complain about is how do we do the stuff we don’t
want to do and complain about how we can get better at the
things we don’t want to do.”

Someone noted that this role does exist in open source projects that are
managed by companies. Another person noted that there are lots of
tools for project managers, but developers don’t tend to know about
them.

Towards the end of the conversation, there were a lot of examples given
of project management tools. A lot of them discussed how problematic
they were and how they worked for them. It seemed that most
maintainers had not heard of these or the tools or did not actually want
to use them. Bugzilla appears to be a product that no one appreciates;
according to one participant, “Bugzilla is Jira with more AJAX”. It
provides self-hosted bug triaging. Nobody had an example of another
issue management system. They also suggested it would be nice if
GitHub provided the feature of automatically closing issues, or having
pending issues rather than open issues.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

28

Takeaways
• Find ways for projects to have a dedicated project manager.

• Sort email list through Gmail exclusively to manage notifications.

• Another suggestion was made for a bot to tell you that an issue was
stale and auto-close them and create more automation. This was
also reiterated in relation to enterprise and non-enterprise cloud
tools.

• Sometimes someone has a problem, and they need to ask for
clarification. They ask a question and have to wait for the response.
They would love for the issue notification to be in the queue.

• How to filter the issues based on the types in the CC address: set up
some filters to specifically filter out non-important issues.

• If you don’t know if you are making progress, try using ShipHub to
create a burn-down chart of all of your issues.

• Develop a way to template questions with versions and reproducible
bug templates.

• Labels issues with “needs more info”.

• Rust compiler error message or A/B testing would be helpful.

• Add a secret message to add an emoji to get quicker triaging. React-
native-firebase.

• Issues should be pending so that maintainers don’t feel so bad when
they close them.

• Managing notifications is challenging; It would be nice to have
keyboard shortcuts.

• Octobox was mentioned as a solution to use outside of web
notifications.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

29

Community of advice
There were three themes in this session: avoiding burnout,
mentorship, and the relationship with technology that affects
participants’ ability to connect and grow. There was consensus among
the participants that socialization with other humans gives you
positive energy and can really recharge you to get back into maintainer
tasks.

Online interactions can provide a false sense of connections, like
through an avatar or a pull request, but you never really connect with
the individuals as persons. More specifically, it is rare for maintainers
to interact with each other personally outside of Maintainerati.

The conversation then shifted towards mentorship. You need to be
careful in choosing mentors. One characteristic to look out for is
someone who is providing feedback or advice versus someone who gives
a criticism. It is really hard to find someone who really wants to help
see you improve and see you do better. Everyone agreed that it is
important to surround yourself with honest people, meaning people
who will tell you how it is, even if they are not necessarily more
experienced, who might have a different point of view or come from a
different background.

Another characteristic to look for is shared values and motivations.
Ultimately, of course, it is on you to choose the right mentor and even
more so to choose the right answer. Mentors can give you advice and
point you in a certain direction but it is ultimately your choice how you
want to act.

One final piece of advice from one of the participants was to distinguish
yourself. Your potential mentor might have multiple people who are
asking for mentorships; you need to give them a reason to choose you
over someone else.

One of the other participants noted that over time, as you become more
comfortable and you grow, you can kind of become your own mentor
and even have the opportunity to mentor others. In order to get there,
it is really important to focus on self-awareness, being mindful, and
being fully present.

Finally, the conversation shifted to discussing how technology affects
our ability to connect, our ability to grow. One participant noted thatBE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

30

while it is a lot easier to learn technical lessons on your own, life
lessons such as relationships, communications, and interpersonal
relations are a lot harder to learn on your own and you need to rely on
others to help with that.

Another participant noted that as a result of this, it is also important
to disconnect, to reflect on that time online, but also spend some time
offline. It is important to make true connections with other humans,
real person to person connections, but this is hard to do again over a
pull request or online.

Takeaways
• Real, face-to-face human interactions are necessary to recharge and
grant positive energy for maintainers who gain a false sense of
human interaction online, such as through pull requests or
interacting with avatars or fellow maintainers.

• The process of online disconnection is important to reflect on online
interactions but also to establish true human connections and avoid
burnout.

• Surround yourself with honest people who will tell you how it is,
even if they are not are not necessarily more experienced, but who
may have a different point of view or come from a different
background.

• Mentorship is essential in human connection because life lessons
like interpersonal relationships and communications require
interaction with others.

• Choose a mentor who will provide feedback and advice, and
champion your growth, versus someone who just gives criticism.

• Choose a mentor with similar values and motivations.

• A mentor or support network can give you advice but ultimately you
have to make your own decision and pathway.

• Distinguish yourself so you can compete with other candidates who
are eyeing the same specific mentor.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

31

• The traits of being self-aware, mindful, and fully present can, over
time, help develop oneself to become a mentor for others and
yourself.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

32

Dealing with “I want” and the
lack of “I can” or “I will”

This session was a small group that began the discussion with issues
surrounding engaging people in projects beyond bug reports. The
discussion built from the experience of an individual who, when taking
over a project, found that a lot of people were very forthcoming in
reporting bugs and issuing feature requests. They observed, however,
that this did not translate to people contributing towards the project.

The key driving question for the group was how this dynamic could be
changed: a movement from “I want” to “I can/will”. This discussion also
pointed to the tension point around making it easy to contribute to a
project versus making it easy to be a contributor.

A hypothesis by the note-taker here was that the people who want are
not people who can contribute because of a mismatched skill set. The y
are not able to develop the said thing. It requires so much time and
investment to learn how to build/develop this.

The group discussed the experience of a particular participant. The
participant’s current approach is that when people submit requests
asking for things they say:

“Sorry, I can’t work on that now but I would be more than
happy to see a pull request if you want to submit it.”

Another participant asked them:

“Why do you feel the need to field these people’s pull requests?
Why do you feel the need to respond to issues?”

The first participant didn’t really have a clear answer, other than that
he wanted to. The two participants discussed reasons why they weren’t
getting pull requests. It became apparent that the participant had
taken over his project about a year ago. The question was asked, “How
did you get suckered into this?” Their response was that they had been
looking for a project to contribute to within the open source community
and that just happened to be one that he used and felt that he could
take over.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

33

Finding something that interests you may not always be the sole
criteria to use when searching for a project to take on. The issue here,
consequently, may be about identifying what a sustainable project
looks like, if you are going to take one on. The discussion and
experience above may be a useful guide to those looking to take on
projects about what to look for. For example, when one has a popular
project that doesn’t have a lot of contributors, maybe it’s just not
sustainable.

Getting people to follow through also appeared to be an issue. However
this may be more to do with the language used, which in this case is
Go. Not that many people develop in Go and there is a corresponding
small number who want to learn it. This was suggested as one of the
reasons why they might not be getting so many contributors.

The person who maintained the Angular project said they get a lot of
people who want to contribute, but then they find that it might take
them a few days to get up to speed and fix random bugs. Even with
contributors, it still appears that a lot of people become disinterested
and lose the motivation to actually follow through:

“We get a fair number of people who want to contribute. It’ll
take a good few days to teach a random person. Even bug fixes
are fairly complex and require restructuring stuff. You need to
be extremely motivated to do any of this. Only self-motivated
people do it.”

When the one participant found out that the other participant was on
the Angular tools team, he became very interested and asked lots of
questions. He is a huge user of Angular and considers himself part of
the community. They talked about ways to contribute to the project.
This is more so for the Angular project than for the first participant’s
projects, who asked: “Angular has a huge ecosystem, have you ever
thought about looking into this?”

They also talked about how easy it is to find contributors to code, but
they are always looking for good UX people and documentation people:

“Easier said than done. No incentive for them. No recognition.
Not on GitHub. Not on Slack.”

There is no incentive for these kinds of people to join the project as they
don’t get recognition. They are not on GitHub. Participants don’t have
any answers for this.BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

34

The group also noted that awareness of the maintainers’ community is
not strong among participants.

Takeaways
• Create a road map for your vision, and clearly communicate what
you’re going to be working on.

• Select projects to take on a function in ways that meet your
expectations/values, for example being part of an existing ecosystem
you are active in or being community-oriented.

• We need matchmaking for open source, finding contributors in
documentation and UX beyond GitHub. Maybe ServerFault is
better, or contributors may be found at Meetups. It is like “online
dating versus spending time with like-minded folks”.

• Increase the visibility of the maintainers’ community.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

35

Funding
More than 25 people turned up to discuss issues of funding, with note-
takers indicating that maintainers are very concerned about funding.
There was some policing among the participants in terms of
communication (terms of speech or voice) surrounding this topic, also
suggesting that it is a “hot button” issue.

Maintainers feel like asking for funding feels like asking for charity,
but nobody can really make a living off open-source even though their
work provides huge value to corporations. There was a strong feeling
that maintainers are enriching corporations and getting nothing in
return, and frustration around companies making profits from what
basically amounts to free labor. One note-taker observed that this
session focused on a question of platform work and the platforming of
that work.

Most issues discussed by the group centered on getting funding from
corporations as opposed to individuals. The group identified that
companies have money for open source software, and asked how they
are helping with funding. They suggested that mostly they aren’t.
Companies may be providing additional marketing support for a
project, “but that doesn’t pay bills”. The discussion was about open
source’s sustainability, and the tone of the discussion suggested
frustration regarding the options available.

Participants discussed sponsorship programs and many users said
that it felt like a charity program:

“Sponsorship doesn’t feel right because it feels like charity.
We’re doing real work. Pay us for the product we are
delivering!”

“Moving out of the charity model” was identified as a desire by
participants, implying some consensus about the problematics of
charity. For one participant, visibility is a key driver for the charitable
approaches of corporations. For the group, GitHub Sponsors sounded
cool, but some people don’t think they will be able to bring in enough
money to make a living and that it still feels like charity. A lot of people
in the room felt that we need to be moving away from a charity
framework.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

36

Participants discussed the question of how to receive (charity)
payments from a tax perspective. They generally felt that if they were
only getting a couple hundred dollars a year, the tax overhead was not
worth it. How do you receive (charity) payments, for example, and
explain it to the German tax office? Consequently, receiving donations
was perceived to be “a hassle” because you need an entity for it, no
considerable money is moving that way, and there is a lot of overhead.

Another financial general challenge identified was that corporations
sometimes need contracts to contribute large blocks of money, which
makes contributing to open source more complicated. This is harder to
work with as an individual.

Evidently in the group there was frustration around the kind of
patreon and grant/ sponsors model for participants. In weighing
whether grants feel better than sponsors, and whether they achieved
more, participants suggested that it depends on the expectations of the
grant. They observed that if grants can send money to people and
organizations, it can be very impactful. One person observed that they
want to keep parts of the stack from “the big five” so had established a
grant scheme, and were accepting applications from a diversity of
people and organizations, both small and large.

An underlying topic throughout was who has the ability to invoice,
which requires entities (Patreon and PayPal were mentioned as
examples). A participant had done some random sampling on Patreon,
seeing who is sponsoring whom with the main sponsors being other
developers rather than corporations. The group observed that:

“I don’t want money from other contributors! They gave me
time. I want businesses to pay.”

Participants suggested that sponsorship feels the community is paying
the community and just moving money back and forth. They estimated
that 80-90% of funds never leave the system because maintainers
sponsor each other. This does not really solve the problem
fundamentally. While maintainers might sponsor each other it’s a zero
sum game if outside money isn’t part of the funding model.

A critique offered was there is “slush money” being passed around, 80-
90 percent of the flows go from pocket to pocket, and the pushers skim
a slice off from each transaction. In this situation only some individuals
may make a lot of money. One participant felt that this is a harmful
mechanism, and asked, “how do we break out of this?”BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

37

Another participant insisted that framing of sponsorship is at the
heart of the issue. The current framing is “the software is free, but I
am awesome”. The observed that this enacts a perverse mechanism
where it is not aligned, whether the logic is “the value I get that I pay
for”, or “I pay because I appreciate that there is a person behind it”.

Participants discussed the question of when you do set up some sort of
funding for a project, how do you decide what kind of value
corporations are looking for. Participants discussed what sponsors
could get for their support:

• A seat on the steering committee.

• Consultancy.

• Maintenance (which was seen crucial).

• Buy feature development (like Kickstarter).

• Create a feature faster.

In terms of offering a seat on the steering committee, participants
observed that while companies may pay an enormous amount of money
for a seat and set the direction, maybe that wasn’t creating the best
outcomes for the projects.

Consulting is another option discussed. An issue raised was that while
maintainers can consult with companies that want to use their
software, they don’t get to push the work they do for consulting to the
open source projects in the first place. Consultancy and maintenance
are juxtaposed, and participants highlighted the difference that the
consulting model may often only support for active development.

Participants felt that consultancy takes away time from maintenance
and development, which was seen as critical: “By maintenance you
gain knowledge by theoretically having thought about those issues, and
you can then do consultancy” to get the money. A note-taker asked, “Is
maintenance in this respect almost as career development?”

Maintainers are willing to explore alternative funding models,
including brands, bounties, dual licensing, or even selling their
products in a SaaS model, but all have unique challenges.

Participants considered Kickstarter for features and observed that you
get paid to do a feature initially, but long term supportability is notBE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

38

funded. With the RedHat model the software is open-source, but users
need to pay support contracts. For dual licensing, they observed that it
was free for open-source, but commercial needs to pay. The SaaS model
involved selling the product as an API or service instead of offering the
source for commercial products.

Bounty systems/mechanisms were described by one note-taker:
“basically they want to hire you, though that’s not what it is called, and
implementations go through their approval for you to get paid for.”
Money, sponsorships and bounties were also considered to be a
prioritizing ranking/mechanism: “here is my issue list that I am
working on anyway, I want to make some of these faster if I get paid for
them.”

Participants observed that bounties still feel like there’s too little
money for it to be worthwhile and that bounty sources are not
profitable enough, having tax complications. A joke was made about
bug bounties: “get paid once, maintain forever”. An example of one way
to approach this provided was that a suggestion had been made by one
participant within a platform work product to pool a maintenance slice
off each of the sponsorships/bounties.

Takeaways
• Industry-maintainer collaboration surrounding solving funding
problems and challenges. Maintainers continue to want to see more
leadership out of the industry on how we solve these problems
together.

• Linux Foundation sponsorships are sufficiently large enough that
they can actually help pay the bills ($50k minimum).

• How do we fund projects instead of people? Projects need a tax
entity and a payment structure to redistribute funds to the
individuals who work on it.

• A participant recommended to use https://backyourstack.com/ but
raised the questions on how to dispatch the money: equally, or is a
dependency more or less important?

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

39

Non-technical aspects of OSS
versus career growth

This discussion was between two participants, plus the note-taker, who
also participated. It felt more like a therapy session than a real
conversation. The conversation began with discussion about a Twitter
comment on how women shy away from using titles that are seen as
less serious and less technical, such as developer relations or
community managers, and how often women and minorities take over
the DNI work because they are the only ones who actually do it in the
first place.

De-valuation of glue work
Glue work is that necessary work of coordinating people, especially
across different functions, and ensuring that everything is moving
smoothly. Glue work is rarely seen as valuable, precisely because it is
not seen as additional work or even actual work, despite its importance
in the smooth functioning of an organization. Thus, it never results in
a sense of increased responsibility. People who do a lot of glue work are
passed over for promotions and raises because they didn’t do as much
engineering work. This disproportionately affects females. Men often
don’t need mentoring or don’t think about mentoring because white
men are more frequently given opportunities that women and
minorities, who need to beg for them and are often denied. We need
better leadership from CIS white men, especially when they are in a
better leadership position.

Glue work is real work, especially working in a cross-vendor effort
which compounds the problems that arise. Despite good leadership,
you still have to deal with a potential lack of inclusiveness from the
other vendors. The result is you have conflicting policies and conflicting
ideologies, and you have to find ways to work past that. This is under-
appreciated, difficult and tiring work.

An example was given by a female participant who works in an open
source cross-vendor project. She wanted to spend more time in
engineering work, but there is so much up front work such as setting
up the infrastructure and instrumentation, and other tedious tasks. As
an OSS community, the problems are larger. You have to set up theBE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

40

community in order to be successful and inclusive. She doesn’t want to
do that work; it’s not really engineering work, it’s work that everybody
says is important but nobody really acknowledges it and nobody wants
to do it because it’s not the fun engineering work.

Since you can’t get funds to hire somebody to do that sort of work for
you, it becomes “natural” to fall on her as the woman who notices that
the work needs to be done. But it is difficult to get buy-in from
management because they take an attitude that it’s not valuable to the
business. The implications are that the community comes second, front
work doesn’t get done and ground work is messed up.

The devaluing of glue work results in lowering cross-project
contributions. One participant voiced that he has a low tolerance for
making random contributions to other projects, because there is a risk
of getting into situations with a different culture and non-inclusive
environment. It is not that he doesn’t want to contribute to a project,
but he doesn’t want to deal with bullshit after you make a contribution
into a project just to fix a bug or a typo, or something like that. There
was more conversation about the cultural clash and working on OSS in
a cross-vendor way.

The more common solution is to revert to closed source development
because the models of contribution are much clearer and they don’t
have to take the community into account. For this reason, a participant
commented that it becomes a legitimate reason for a company to hire a
developer relations person, so that they can work in an open source
environment. The specialist developer relations person can handle the
community aspect of the open source stuff while allowing the other
engineering employees to focus on the engineering work itself.

Strategies to Re-Value Glue Work
Several participants proposed to change promotion metrics or inclusive
technical contributions. The point was raised of how you measure
people’s contributions. One participant mentioned that, in his
company, they also looked beyond technical contributions and included
mentorship and industry impact as criteria. This can help offset some
glue work issues.

Another proposed solution is to decouple the review cycle from the
promotion cycle, as this hampers career growth. The primary casualty
are the women:BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

41

“It’s always useful to ask how many women there are in staff
engineering roles, because frequently the answer is going to
be ‘not nearly enough’.”

One reason for this is that review cycles don’t come often enough, and
so feedback comes too late to change your behaviour. The result is that
you failed to gain the promotion because of the lack of timeliness of the
feedback.

Finally, the group discovered that many of them had backgrounds in
the humanities. They all agreed that the world needs more humanities
in tech to overcome the bubble that prevents people from addressing
the actual issues that they need to deal with. This included the thought
that “nobody seems to know what they are doing, but they certainly
think they know what they are doing, especially in the San Francisco
type bubble.”

Takeaways
• Glue work is undervalued and affects promotion metrics and
morale, especially for female developers.

• Re-valuing glue work could benefit from better leadership from CIS
white men, especially if they are in better positions. One impact of
good leadership is an increase of cross-project contributions.

• Closed source development is one solution because the models of
contributions are clearer and the community is not a factor at this
stage.

• A closed source development model of contribution legitimizes a
need for management to hire a specialist developer person to work
on the OSS environment.

• Change performance metrics to re-value glue work.

• Propose inclusive technical contributions.

• Decouple review cycle with promotion cycle due to the uneven
timing of feedback and change possibilities that disproportionately
affects women.

• Humanities in tech background helps in overcoming tech silos.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

42

GitHub notifications are terrible
There were six people in attendance, some of whom are designers.

The problem discussed is that not every notification you get is
important/contextual, so we need the ability to filter them out when
necessary. It may be useful to try different workflows in different
situations/teams.

When you only care about a single repo, pinging people by name works
well. But notifications aren’t scalable for big teams: you end up with
multiple organizations and repos and unable to track everything down.
Over time the core people get busier and you end up with teams instead
of a point person and the responsibility is diffused.

Part of the issue is just identifying the right people to work on tasks
(who cares/owns/understands what, what is the scope). Maintainers
end up on third party software to manage and even communicate with
people (direct message on Slack, Twitter, etc) since you know they
won’t see the notification. People feel guilty for missing something, but
in the end declare notification bankruptcy because it is overwhelming
and one might as well start over.

Every comment creates a notification so you need filters to get rid of
messages from CI/bots. Some people get good at creating advanced
github queries (only show things that were commented on in the last
week). Projects have their own custom dashboards with smart filtering
of the project’s workflows.

On stale bot: people have opinions on how annoying/useful it can be.
Some don’t use email since they don’t want to mix notifications in with
other mail.

Observations
• Notifications are so frequent that they can easily drive your life and
give you a false sense of accomplishment. How much time did one
spend on GitHub?

• Using emojis to track and comment is fun.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

43

• Maybe notifications isn’t the best name since most people don’t
actually want a push notification. It’s more of a task queue than
something to immediately answer to.

• Dead issues can sometimes blow up into huge threads if they aren’t
locked.

• Simply triaging may signal to others you want to continue to engage
when you don’t.

Takeaways
• Try out Gitspeak or Octobox. Simply unwatch repos.

• GitHub has a new feature to only be notified for custom events
(when an issue is closed/reopened) versus all the comments.

• Unsubscribe from threads often.

• Take advantage of the new triage role from GitHub that helps new
contributors share the load.

• Turn off the default setting of watching all new repos to an
organization.

• Use GitHub teams versus direct collaborators so you can audit who
should/shouldn’t have access to the organization.

• It can be useful to set aside specific time for issues/triage, batching
it up, maybe in the beginning/end of the day. For other people it’s
better to just do it when it happens.

• Mari Kondo your issues, just unsubscribe.

• Create a tier of reviewers, like having a +1 review for formatting/
basics and a +2 review for how it fits within the whole of the project.

• Encourage volunteers to review other’s PRs rather than just their
own.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

44

Contributors
Projects that spend a lot of time focusing on onboarding contributors
have an easier time (not an easy time, just easier) onboarding
contributors. The best practices we have seen include a dedicated
onboarding path that has a dedicated sub-project, with labels for “good
first issue”, and special interest groups so that as folks come onboard
they can self-select into areas of expertise. These dedicated paths are
probably not feasible for projects with only tens of contributors;
however perhaps groups of maintainers with a similar focus could get
together to create an onboarding path.

An “open source brand guide” would be super useful as a starting point
for folks who need guidance on how to communicate with everyone.
This would help with onboarding new contributors. For example, if you
joined a company you would get a brand guide to tell you how to talk to
customers and communicate externally on message, and in the proper
tone. Open source folks lack this tool.

Communication is hard. In a perfect world there would be time for a 30
minute Skype chat to walk everyone through their first pull
request.There would be established trust, and empathy would exist
between everyone. There isn’t always time for this, and the shorter /
terser communication becomes, the more cultural barriers and other
factors impede communication.

This makes it more likely that a miscommunication will occur or that
someone will not feel “heard”, or will feel “insulted” by someone else.
This is an independent challenge for onboarding new contributors and
making sure that they are given the benefit of the doubt, and that they
give others the benefit of the doubt during communication.

Some projects need non-code contributors, and it is not widely known
that you can become a contributor to help with documentation,
triaging, or other non coding tasks.

Takeaways
• Setting clear expectations for new contributors in both directions is
key. The contributor needs to tell the maintainer what they hope to
get out of it, and how long they are interested, and the maintainer
should tell the contributor what help is useful.BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

45

• Localized onboarding guides are definitely helpful.

• “Guidelines” aka - terms of conduct - would be very very helpful.

• Someone’s first contribution should be handled specially.

• Letting people self-select into their first issues has worked well to
develop longer term maintainers. These are sometimes managed
through an onboarding sub-project to provide additional guidance,
and even fill with some of the easier first issues.

• There is a label for “good first issue” that means you are willing to
help people fix the issue, and guide them through the process. You
can volunteer to help folks fix this issue.

• There is a label for “help wanted”. This means the filer can’t really
help with it.

• There are special Interest groups (sometimes up to 40) within a
project to let folks self select into an area that they want to
contribute to the most.

• Leave typos in the “onboarding” guide within the onboarding sub-
project. See who fixes typos.

• Keep in mind that folks who don’t speak English well may still be
able to program in English.

• Documents should have a “contributing.md” and a “how to review
pull requests.md”

• Take care to rephrase things so as not to be rude; for example, “Yes,
and” instead of “no, but”.

• Take a look at the GitHub Repos “Maintainers Wanted” and
“Danger”.

• Dealing with hostility to new contributors: if maintainers are
consistently assholes, they get removed.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

46

Making contributions more open
As introductions were being made, the participants explained how they
started their open source projects and how they lacked structure. That
same lack of structure was the first theme. Attendees gave examples of
how they got to this point with no organizational structure or written
documentation.

The beauty of open source is that you can start without permission or
a plan. But then, participants asked:

“How do you start developing in a serious way?”

“How do you go from a project that is a few people to a place
that has accountability?”

“How do you get maintainers to be more accountable?”

The problem can be that a project can grow bigger faster before
governance is created. They get stuck in a situation where everything
is only tribal knowledge. There were mentions of how open source
always starts this way, and how you will eventually need to make time
to organize thoughts and contributions in a way that all current/future
contributors can participate.

Much of the discussion focused on the case of one project that has poor
maintainer accountability. The engineer who works on this project
explained that when they start work in the morning and the project is
broken, they always have to fix it because they are the only one who
cares. They have light review guidelines, but they are often ignored. A
participant commented that this is a culture problem: if maintainers
don’t respect the rules, then they should not be part of the community.

A participant offered a second example of a large academic project that
works in the open and struggles with consistency and communication
due to the project having multiple contributors and no clear technical
leader. At this point, the open source maintainers started answering
specific questions for this project based on their experience in a non-
academia realm. From this point until the end of the session, the
participants shared examples with each other and the conversation
was very supportive.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

47

Takeaways
• You need a governance system at the beginning.

• If you join a project later, you have the opportunity to provide more
discipline to the project: this is time to discover what information is
not written down and needs to be.

• However, you cannot write everything down.

• Some contributors need to be more attentive to preventing code from
breaking things.

• You can make a video call if synchronous communication is needed.

• Codes of Conduct can be version controlled in Git.

• Contribution guidelines are essential, but they are only effective if
they are clear.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

48

GitHub package registry
There were four attendees and three were from GitHub Product or
Packages. The group turned more into a panel with the engineer
participant asking questions from the panel. There were discussions
around the following issues:

Questions specific to package registry, for example that the
documentation doesn’t explain the limits very well.

Conversations were discussed about security and security issues. For
example, a maintainer was concerned with the layers and also asked if
there would be support for commits too, so the engineer was able to ask
a couple of those questions and being able to assign with the GitHub
API and ask questions about how the product was actually built, e.g. in
a silo fashion by layers.

Finally, the discussion turned to the future plan to open source the
back of the package registry so you can create your own support. There
were conversations about using it for different projects, security and
trust, more specific to the maintainers’ full-time job, not really related
to the open source activities. This mostly was a product discussion and
concerns were based on their day-to-day work, which included security
concerns and documentation needs.

Takeaways
• Clarify the package registry’s documentation to explain the limits,
security layers and how to create your own support to effectively
make maintainers’ jobs easier.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

49

Life of an OSS contributor +
working from home

There were eight participants in this panel, and they were completely
engaged in talking about the challenges of working from home. A
natural progression of topics were covered, beginning with the
challenge between ways to focus on work while at home and the ways
they were distracted from it.

Focusing on a project appeared to be a double edged sword, in which
getting to the point of focus appeared to take a wide range of tools and
approaches, while stepping away or switching off from a project was not
always possible and bled into family time:

“You want to be present for your family but you know, and
they know, you are thinking about 101 different problems in
your head at the same time.”

Social media was found to be an unwelcome source of distraction, with
some participants of the group limiting their time on it and others
completely blocking it. All participants discussed transference of
distraction to some other form of media as a substitute rather than
becoming successful at focusing.

The line between focus and distraction was additionally blurred by the
ways family interrupted because participants were perceived to be “at
home”.

“The perception is from your family that if you are working
from home you’re interruptible, but you’re not always that
flexible in reality.”

All participants found that the flexibility of working from home is both
a pro and a con. Because of this, they felt that their work-life balance
got mixed:

“If you work from home you’re available from 9am until 9pm.”

Other key challenges to working from home mentioned is the possible
reduction of social interactions and also not having a colleague to ask
random questions. Similarly, even when you are not working at home,
you are still in the context of “work”.BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

50

The presence-absence and work-life tensions that these conversations
point to appears to be created through two dynamics: being passionate
to be working on OSS projects (it didn’t always feel like work), not
holding to a demarcated time and place to work on these projects, and
trading away time with family to the open source project because
participants wanted to or because they felt that people were relying on
them.

Takeaways
• Participants attempted to manage availability to family and other
responsibilities both spatially and through mind set, including
assigning a specific space for OSS project work and making a
conscious decision to switch to “family mode” when at home.

• Switching context (ie going to a coffee shop) and using a structure
may be good for some people as a way to contain the times that they
work in their OSS projects.

• Tools and preferences that people had for working remotely included
a website called focus.me and using noise-cancelling headphones.

• Utilize procedures for “switching moods” such as background music
to create a set and setting for the work.

• Focus may be assisted by stepping away briefly to return fresh to the
work, for example taking a 20 minute break every hour, using
mediation tools or napping.

• Defining the OSS project as work makes sense, even if it’s your free
time, or something you do for fun.

• Limit yourself and passion for your OSS projects.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

51

Being a good OSS citizen
“Do you know how to onboard?” was the introductory question for
around 20 participants in this session.

Some projects have a dedicated on-boarding path for new contributors,
which often starts with fixing typos or other easy-to-solve issues.
Participants discussed what a “meaningful contribution” is and
whether updating the documentation or fixing typos falls under that.
There is a special sense of ownership and pride in regard to code
contributions. So these are probably the most significant contributions,
since maintaining the code is the point, but also a dissenting voice:

“As maintainers we all looooove documentation and project
maintenance contributions. How do we celebrate this?”

The group talked about the GitHub contribution user interface where
reactions or comments don’t count in the “Contributors” stats. This
mirrors the previous discussion point that only code contributions
count, but it seems that GitHub is going to address this issue by
updating the rules on what counts as a contribution.

There is still tension in having “toxic and unhelpful” mechanisms like
leaderboards that focus on huge contributions and might discourage
new contributors who might think “I will never ever make it to this
list”. The group wondered what a good contribution list could look like
and if it would be better to have a monthly contribution list or a flat
one, like what WordPress has chosen.

A lot of projects also use “Good first issue” as a label or have a
“Maintainers wanted” call to indicate entry points. Another helpful
tool is a CONTRIBUTING.md file translated in languages where core
or future communities of the project are.

The discussion moved from onboarding to the review process and
participants remarked that a review process heavily depends on the
reviewer and is in general an inconsistent experience for contributors.
Participants discussed further that it might be helpful to review the
review process and its guidelines.

One participant recommended to run exercises that help to reveal and
reflect on hidden biases to prepare reviewers better. Another
suggestion was to outsource some of the process to tools, such as lintingBE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

52

or tests to deliver a more consistent review experience. Also,
contributors can run it before handing the code in for review.

Participants agree that it is highly recommended to be explicit and
transparent about the contribution and review process and guidelines,
for example by having a Code of Conduct (CoC).

Asked about their experience, two recent computer science graduates
said that they rely on the README file and agree that the first
experience matters a lot.

Local hackathons or regular calls can be a good way to onboard new
people and add a human touch to the contribution process. Another
helpful thing might be having workshops for new contributors and
video record these to make them available to a broader audience, and
to have a dedicated onboarding team.

Takeaways
• Design an onboarding path for new contributors and document it.

• Translate process/on-boarding guidelines to languages where core
part of the community is.

• Use clear issue label to indicate good entry points for new
contributors, for example “good first issue”.

• Design the review process and document it.

• Use meaningful tools to help improve the review process (tests,
linting).

• Make sure reviewers follow a Code of Conduct, are open to new
contributors and sensitive about their own biases.

• Consider documenting the on-boarding or review process via video
or to run dedicated on-boarding events for new contributors.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

53

Cross-discipline contributors
In this session participants discussed the challenges in engaging with
non-traditional contributors such as UX designers, illustrators and
document writers. They found that this problem space had a few areas
that need attention including making projects discoverable, supporting
non-code contributions and recognizing these and driving sustained
engagement of non-coders across projects.

Discoverability: how do users discover opportunities? How do we reach
non-traditional contributors in the first place? How do we influence the
tech training programs and meetups to help engage them with open-
source?

Making contributions: how do we make it easier for new contributors
to make changes? It can be tough to find people who want to work on
documentation/editing in the open-source community. Tools like
GitHub can have a steep learning curve for non-technical users. Should
GitHub be easier for non-technical users? Not be so married to git
terminology?

Recognizing contributions: how do we help provide meaningful
recognition of non-code contributions that help users feel good about
what they did, and provide them some tangible value?

• It’s a mix of culture and tooling.

• Can we make best practice videos on how to do this?

• Can we help roll-up likes to help establish a user’s recognition?
Achievements might be good.

• YouTube plaques for vlogger milestones are a great way to celebrate
users.

Driving sustained engagement: How do we help a non-traditional user
move from one project to the next. People get engaged in OSS from
work, but it’s tricky if their communities don’t engage there. People
who aren’t programmers don’t know about GitHub, so they may not be
aware of the opportunities. How do we reach these people? Can
community outreach help? There’s lots of “learn to code” outreach, but
there’s very little to help users discover the other roles in tech.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

54

Participants also discussed the issue of contribution by academics.
They asked, “how do we influence academia to contribute to open
source instead of doing greenfield project?” This suggests that whilst
engaging academic contributors is desirable, academics are more likely
to have a different agenda to the broader community.

Takeaways
• The challenges involved in engaging non-traditional contributors
include making relevant projects discoverable, facilitating
contributions, recognizing non-code contributions and driving
sustained engagement.

• Platforms like GitHub can do more to make their project’s needs
known by putting up global tags like these and making them super
discoverable. For example: “Good first issue”; “Documentation
needed”; “UX design needed”; “Icon designer needed”.

• WriteTheDocs is a great conference that supports cross-disciplinary
engagement in non-code contributions.

• Recognition of non-code contributions involves a mix of culture
change and tooling. Suggestions for tooling include: best practice
videos on how to do this; establishing a user’s recognition through
badging achievements; provision of YouTube plaques for vlogger
milestones.

• Helping a non-traditional user move from one project to the next
drives their sustained engagement.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

55

Power of positive feedback
The discussion consisted of three participants, who shared toxic issues.
These were mostly around reflections and learnings on positive and
negative feedback. Some key issues include:

“What is the role of positive and negative feedback?”

“How can we use these types of feedback judiciously?”

Context: One participant pointed out that it was horrible to wake up to
negativity in your GitHub feed. The host of the session said that he
“sometimes opens an issue to leave praise and thanks, and sometimes
the response is “What the fuck is this? Close.”, but mostly he gets
sincere appreciation.

One insight that is that human behaviour is “really good at pointing
out what’s wrong—just look at the name “issues” and “Git blame”—but
we’re frequently not very good at pointing out what’s going right. Why
is this?”

The group came to the realisation that rewards reinforce the behaviour
and culture that you want to build. It’s not just about recognition. It’s
about positive reinforcement. The group also talked about not wanting
to create praise junkies, that is, people who just do things to receive
praise.

The host then began to wonder if, as he opened up these issues, that
was what he was doing, whether he just wanted to receive the praise
and gratitude for opening those, because he was certainly not trying to
reinforce a particular behaviour. He was just trying to be nice.

This is where the conversation started to take a bit of an interesting
turn away from waking up to negative issues to asking, “What is the
role of positive praise?”

Dangers and Counterpoints to Positive Feedback
The group talked about celebrating achievements versus cults of
personality. The group talked a bit about work experiences where
reward systems quickly turned into cults of personality where you have

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

56

to be a member of the in-team or cool kids’ club in order to be eligible
for those kinds of rewards.

Then the group thought about people who use praise to manipulate
others. There are certain sorts of Machiavellian people who are very
good at getting what they want out of people by using honey rather
than vinegar. This is because “it’s nice to be told by strangers that
you’re valuable.” Slowly a person begins to tailor issues to garner
praise.

One participant worried whether his frequent entertaining talks
without substance “was just performance and if he was just doing it for
the praise.” However, there is a role for this. For example one member
pointed out that even if tech conferences are “tax-deductible
hangovers” or that you don’t learn from it (with some disagreements
here), “you make friends and connections with attendees” and “also get
inspired to do things” and “and that’s what it’s (conference) for.”

This is when the host realised that crafting entertainment is maybe
alright, because he wants people to tell him how good it was, so is he
thinking of himself more than the audience? A counterpoint to this was
that part of the purpose of the talk is to generate conversation and to
meet people:

“Thanking you for your talk is a great excuse for somebody to
introduce themselves to the speaker, and that frequently
creates a positive environment for collaboration in the future.
So, it’s not all bad.”

Advantages to negative feedback
Engineering control systems need negative feedback. One participant
mentioned that positive feedback creates unstable systems in
engineering control systems. Some examples include the PID
controllers or the steam engine governor which are both exclusively
regulated by negative feedback.

Negative feedback systems are designed to say, “No, that’s wrong, go
back to what is right” when these systems move away from the desired
norm: “Negative feedback is designed to subtract behaviour.”
Meanwhile, positive feedback can only create unstable systems by
saying, “Great, keep doing what you’re doing, go faster.” Eventually,

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

57

“the system will self-destruct or reach the speed of light. It’s not
typically what you want.”

The reason that it is easier to give negative feedback is that “it has a
clear action item associated with it. It does have an emotional
component and it does set up incentives for certain behaviours…” In
contrast, “positive feedback has no action item associated with it in the
same way.”

The session host commented that they originally gave positive feedback
to make people happy, but now realizes that it can be used in a more
structured, careful way to reinforce future behaviour.

Takeaways
• Positive feedback feels better but has a tendency to create “praise
junkies,” cults of personalities, and the manipulation of others.
Therefore it needs to be used more carefully and structured to
reinforce future behavior.

• Positive feedback during a tech conference creates a positive
environment and rapport with speakers and allows for interaction
and creating of future collaborations.

• Negative feedback is essential in the system because it provides an
action item that sets up incentives for certain behaviours, unlike
positive feedback.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

58

Introducing funding into
community-driven projects

The group agreed that they were going to intentionally avoid the “how
to get funding” topic and instead discuss “how to manage funding”.

One of the first examples given of how to effectively manage funding
was the Node.js Travel Fund. This is an amount of money that the
Node.js project requests from the OpenJS Foundation (formerly the
Node.js Foundation) every year to enable its collaborators to travel on
behalf of the project. All of this is logged publicly and managed via PRs
inside of a repo. The only part that is not fully transparent is the
submission of receipts to the Foundation so individuals can be directly
refunded. OWASP has a similar process, except for requests, which go
into Jira.

Stepping away from specific examples, everyone agreed that having
clear and well-defined rules is very important. Defining what the
project considers to be acceptable and unacceptable uses of funding is
vital for the long-term success and sustainability of funding models.

OpenCollective has laid out a foundation for this, effectively allowing
people to request funds and having that approved by core collaborators,
but they may not have the tooling in place to explicitly define
acceptable/unacceptable usage. Additionally, the model of
OpenCollective, allowing core maintainers to manage funds, may not
scale when there are dozens or hundreds of core maintainers.

One group member brought up a rather interesting case: Debian.
Debian keep money in different organizations around the world. In
taking this approach, they avoid the need to convert one currency to
another and incur costs for exchanging currencies. Additionally, they
have historically not paid for maintainer time. This is beginning to
change, however.

Something that no direct funding tooling currently helps with is
budgeting for taxes, consultation, and so on. These necessities are
required, or would be extremely helpful. Foundations like the Linux
Foundation are good at this side of things since they directly manage
this work.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

59

The discussion ended with Project Managers: in Node.js, this has
historically been something that the project has wanted to see
collaborators help with. The group discussed open source and project
management, specifically focusing on hiring one with funding. Nobody
knew of a successful case of OSS hiring a project manager since project
managers have typically been hired from outside of the community,
rather than from within.

Takeaways
• Public and transparent funding management was generally agreed
on as being the best path, with the caveat of privacy when required/
in the case of safety.

• It is vital to have clear, concise, and enforceable rules around how
funding can and should be used.

• Taxes and other fees being managed is important. If they are not
well-managed, this adds to the burden and risk of maintenance.

• Having the ability to hire a project manager is something people
would like, but have not yet seen a well-defined path to success for.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

60

Velocity vs. usability in OSS
Participants shared ways to preserve usability, but still ship fast
enough. The discussion started slowly as many attendees did not arrive
until a few minutes into the conversation. As a result, the topic was
explained multiple times. There were no conflicting views in the
conversation and it turned out to be mostly a “share and tell” about
different tools, plus a substantial conversation about communication.

The topic focus was eventually summed up as relating to how the “lack
of dogfooding” shifts the focus toward velocity shipping, which hurts
usability. Without dogfooding, it can be hard to see design flaws. There
is a point where the developers have a limited understanding of
usability because they are not using products in a way that their users
are. One participant commented:

“The moment I get lazy, there is a usability problem.”

A participant shared that if they notice that they are typing up a lot of
help functions, then they will file an issue to improve the developer
experience. Unconscious bias helps maintainers to work around the
limitations, but this creates problems: maintainers know where to not
step and so avoid the hard problems. After awhile you stop finding bugs
and you learn how to avoid them. You become immune to new bugs and
seeing them. Maintainers might not realize that an issue comes up
more and more:

“What is the process for empowering users to have the courage
to say that the docs are wrong?”

The participants gave examples of how they communicate to
contributors, i.e. mailing lists, email, blog posts, etc. Most attendees
gave examples for ways they communicate.

Some people find emails to be very formal, and if their email box fills
up it causes anxiety. Also, for some people GitHub issues feel similar
to emails. Most participants mentioned they prefer not to use emails.
They do not mind receiving one-way communication with lots of
information, like a mailing list. Email causes anxiety as maintainers
have an overwhelming amount of email and do not find this form of
communication manageable. On the other hand, emails can be a great
way to discuss delicate matters.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

61

Mailing lists and Slack can create additional burdens. Kubernetes had
the clearest structure and seemed to impress the rest. IRC can be scary
for some people too.

There was discussion about how to manage communications, and what
is the ultimate source of truth if participants are communicating
across multiple channels. A participant commented:

“GitHub is the source of truth because everyone has GitHub.”

In practice what this means is ensuring that the important messages
communicated in different channels are amalgamated in GitHub.

Takeaways
• Watch people use your project: anywhere they get stuck, there is an
obvious design problem.

• Using students to test your project is also helpful to discover design
problems.

• Synchronous communication is helpful to help find out the weird
things about your project.

• Be aware that different people have different communication
preferences.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

62

Distributing donations
This space had an alternative title, “We have money in our Open
Collective, how do we use it?” There were four attendees, including a
participant who has a funded open collective (they ended up becoming
the group leader), while the rest hope to be funded one day or support
projects to raise funding. The conversation turned more into a solution
and information gathering opportunity for the group leader.

One thing that came across loud and clear from every maintainer is
that it is important to recognize that maintaining is real work and
contributions from collaborators should be rewarded in some kind of
fashion, so that is very important to the community as well.

The proposed suggestions to use can be described as being past-
oriented and future-oriented. TPast-oriented activities include
rewarding the developers in the form of reimbursement or payment for
the work they have done. There were lots of questions about
reimbursements, about how to even begin to decide what fair pay is for
some of the work, and hesitations around dealing with money itself in
an open source project (this can become really complicated). These
include questions about the project itself and logistics of the
maintaining of the project, e.g. how many members are in your core
team, outsourcing of any work, did you ever pay anyone for anything,
etc.

In the future-oriented activities discussion, one maintainer’s
suggestion was especially well received by the others: to focus on the
future rather than contributions of the past and rewarding the
maintainers who have done work previously. This is because when they
did the past work the expectation was their love of the OS project, not
monetary motivation. So perhaps it would be a bit unfair to go back.

Takeaways
• Establish some kind of bounty program or a feature program where
if there is a certain feature that you want implemented on your
project there could be a reward for the developer who carries it
through.

• Funding meetups or lightning talks.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

63

• Spending for swag, flag labels, t-shirts.

• Maintainer work is real work, therefore rewards are essential to the
community.

• The use of funds can be past-oriented or future-oriented.

• Past-oriented means to reimburse contributions, but requires an
audit of the project such as membership, outsourcing of labour, and
any expenses or payments made. The definition of fair work must be
resolved.

• Future-oriented examples include establishing a bounty program,
funding program features to be built, funding meet-ups, lightning
talks, swag.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

64

Schooling maintainers &
contributors

This discussion was about how to help to build up newmaintainers and
contributors.

New people need guidance and a vision they can follow. There isn’t one
way that fits all; different projects have different requirements and
needs. Sometimes projects are very complex and it’s difficult to find a
good way in. Also the constant jumping around between
communication and writing code can be stressful.

There is agreement that working on open source can improve
communication and collaboration skills. And there seems to be a lot of
enthusiasm and people wanting to contribute, but it’s not always clear
where and how to start.

One good way could be to add “how to contribute to open source” to
coding schools curricula. This would also involve teaching
communication and leadership skills. Open source projects could work
directly with schools based on their contribution needs.

Another way could be mentorship so that future leaders can learn from
existing ones. When the previous leader departs, the trainees can take
over and carry the baton forward. In such a constellation, it’s
important to have a solid foundation on which to base the leadership.
With a good foundation everyone can develop their own style, but stay
in sync with past and future leaders. This also ensures that people can
look up to role models to help them be good leaders.

Participants discussed creating a “School of Maintainers for
Maintainers”. This could be a masterclass as part of a Maintainerati
event. The ideal would be that leaders talk about their daily
experiences and problems they encounter and let other people learn
from it first hand.

The group defined the following qualities for a good leader:

• Be willing to take on responsibility.

• Be willing to learn.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

65

• Have empathy.

• Have charisma.

Also, case studies might be a useful and easy accessible tool to
document and learn from previous experiences.

Takeaways
• Have a documented, solid foundation for a project (vision, Code of
Conduct, etc.).

• Reach out to coding schools and see whether they want to
collaborate and add your project to their curricula.

• Work hard to replace yourself and mentor new maintainers.

• If you are a maintainer, be willing and open to share your positive
and negative experiences so that others can learn from them (in a
workshop, as a case study, etc.).

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

66

Maintainability: Getting people
doing it

This session focused on maintainability and technical debt. The
problem discussed was that adding new features is more exciting than
working on technical debt. There were three themes in this session.
The first one, which was the dominant conversation, was the question
of maintaining versus working on creating new features. The next was
how to create maintenance cultures and platforms, and finally, the
third was issues relating to membership and participation within
these communities.

Creating versus maintaining: A moot argument
The first part looked at the issue as two separate activities. Therefore,
the main problem was seeing creating and maintaining as two
opposing activities. The common question was:

“How do we get people motivated to work on things like
refactoring and bug fixing when there is so much enticement
to create new features?”

One participant disagreed. With their project it was really hard to get
people to build new features or observe deprecation policies or issue
them, because in their project it takes a lot of careful planning to create
a new feature that breaks things or that requires documentation
because they are very policy-heavy. Instead, people would much rather
work on maintaining what’s already there and improving it, because
that’s the easy, low-hanging fruit.

In contrast, the participant who posed the earlier question had
difficulty convincing people to work on technical debt. They were asked,
“Are the people who are building new features motivated to maintain
them over time?” The collective response was “not really”. Here, their
answers showed the strong relationship between creating new features
and the difficulty of maintaining them.

One answer identified was that the lack of interest in maintenance is
due to the fact that:

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

67

“Their tests are a mess. It’s a cross-platform effort, lots of
tests are disabled for certain corner cases because you can’t
build a feature on a certain platform and now there’s a culture
of disabling tests and messing with tests, which creates more
instability.”

One participant identified the root cause as being that:

“Disabling tests creates debt and pulling things out of limbo
almost never happens. You need to have a zero tolerance
policy for this kind of behaviour, or at least something close to
that.”

Another root cause for instability is frequently that:

“The project is broken into a set of discrete modules. Module
API changes happen without updating the modules that
depend on it, just the docs. This is a real problem that is
created by the fact that the project is so big that it cannot be
compiled at once. You cannot create integration tests over the
whole thing.”

Another participant gave a third reason for an unstable system:

“Finding module dependencies manually is an extremely
time-consuming and error-prone behaviour, so people don’t do
it. The result is that people are afraid to make new features
because they don’t want to go through these processes and
they don’t want to face the consequences if they fail to go
through these processes.”

However, another participant pointed out that“CI tests are not actually
an appropriate place for an API contract, and that heavy process
exacerbates laziness.” Instead, the participant questions how to
improve this system. “There has to be some other way to ensure that
API changes are not breaking changes, or when they are breaking
changes things get updated.”

Some solutions
There were discussions about potential workarounds, particularly how
to avoid, “unintended uses.” Do you build policies around accepting
unintended uses? One commented that this creates an unwieldy
process and formalises bad hacks.BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

68

On the other hand, do you just tell people “tough luck for you”, when
they use your API in a way that was not intended, and breaks when you
update it? This answer:

“Does not generally generate a lot of good will inside your
organization. Moreover, deprecations are never trivial, and
you need to take time to ensure that users are well supported,
so it’s a more heavy process.”

One participant mentioned that, internally, if you make a breaking
change in the code base at their company, you are responsible for fixing
code that depends upon the old behaviour.

All participants agreed that this was an interesting sort of way to
handle this:

“There is no process for deprecating features; there is no
process for going out and proactively fixing things, but if
somebody comes back and complains then it’s on you to fix it.”

However, there is cautionary advice from this solution even if the other
desired outcome includes a “version of really big features and more
careful rollout planning.” However, these “can lead to large team
failures, when necessary breaking changes can’t get buy-in, or break
too much. Then the team responsible for these changes ends up
breaking up over stress. It’s not clear if this is exactly the right thing
for open source projects.”

So, the key issue is, how do we communicate:

“When a change breaks things; for example, if you don’t have
a Windows machine, checking changes against Windows
doesn’t happen. You may not even be aware of the fact that you
are making a breaking change. So, if you can’t support a
platform, deprecate it. Of course, that’s not always possible;
you can’t willy-nilly deprecate Windows, but there is that
thought.”

While the solutions were not clear, the bigger questions that interested
everyone were:

• How do you create a culture of developers on a project who care
about testing and supporting platforms?

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

69

• Who cares about developing features that work on all supported
platforms?

• Who care about the deprecation process when it’s time to do that?

Ultimately, although the group were talking about technical solutions
to this problem, they came around to the idea that this is a human and
cultural problem.

At that point the conversation took a turn to the question, “When do
you stay on a team?” You don’t stay on a team that makes you unhappy
even if you really like the tech. At that point the participants began to
discuss terrible teams that they have been on in the past, and they
decided to end the conversation at that point.

There was one last observation at the end that brought everything
back together, that only more senior people talk about interpersonal
issues because it’s much harder to have those conversations, and so
perhaps one thing that could be done in the future is have a mentoring
program for junior engineers to help them understand how to bring up
interpersonal issues in a way that is constructive, rather than have
them hide behind the idea of “Oh, there’s a technical solution to this
problem somewhere, we’ll ignore the human element to it.”

Takeaways
• Creating and maintaining are intimately related and creating
solutions should take account of two aspects of feature design and
who and how maintains that feature.

• A communication protocol must be in place or discussed to
communicate when a feature breaks. Otherwise, teams split up.

• Ultimately, how do you create a culture of developers that cares
about testing and supporting features? How do you keep them
happy working in a team?

• Seniors tend to talk more about interpersonal issues. Create a
mentoring system for seniors to juniors to help teach how to bring
up constructive discussions on interpersonal issues rather than
attribute it to technical causes.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

70

OSS project marketing
In this session, the participants discussed project marketing, both from
the sides of smaller projects looking to grow and bigger projects that
are already well-known and used.

One of the first and most important things discussed was being
genuine. We, as developers, and those developers using our projects,
generally push back on anything that doesn’t smell right.

One example of being genuine that was brought up is Kelsey
Hightower: he is in the ecosystem, telling people not to use Kubernetes
if it’s not a first for their problem… because it’s objectively not a fit for
every problem.

Similarly, React solves Facebook’s problems but is not necessarily the
answer to every problem. Moreover, there are React developers who
will go beyond the hype and admit that, and tell you that you probably
don’t need React for every project.

Those who work on/maintain well known or popular projects had some
insights that they shared with those who were gaining traction for
their open source projects: there are benefits to being the only user.
Having a massively used project that dozens or hundreds of companies
rely on can sound impressive, but it can very rapidly become a burden
on your work, your career, and your personal life. Why even publish
projects?

“Open by default” is a good approach and doesn’t hurt anyone.
Additionally, if this gets baked into corporate culture, it
makes a longer-term commitment to open-source more
natural.

On corporate open source projects compared to individual open source
projects, having a corporate marketing team isn’t required. What ends
up making projects successful is finding people who are also passionate
about the project’s goals/purpose and enabling them to find success,
belonging, and ownership within the project.

Beyond collaborators, finding a first user is vital to continued success.
Having a first user helps answer questions like: Why should this
project exist? Is it effectively solving the problems it addresses? Are
there better approaches?BE

RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

71

Finally, we discussed roadmaps and their utility in encouraging
community. The group generally agreed that roadmaps are an
excellent tool for well-defined projects that have non-trivial usage.
However, building out a roadmap on new/incomplete projects is often
over-optimizing for a future that is likely more fluid than a roadmap
would indicate. Additionally, they place even more burden on
maintainers from an early stage when those maintainers could benefit
from fluidity in project direction.

Takeaways
• When representing a project in any way, being genuine is one of–if
not the–most important things you can do.

• Having projects be well-known or widely used can have drawbacks
(both for the project and for maintainers) in addition to benefits.

• Having a corporate marketing team isn’t required or necessarily
beneficial.

• Roadmaps should be created when they’re needed, not necessarily
as tools to get more engagement with the project. They can limit
project flexibility and build out unnecessary structure.

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

72

ACKNOWLEDGEMENTS
Maintainerati Board 2019–2020:

President: Gawain Lynch
Secretary: Erin Taylor
Treasurer: Don Goodman-Wilson

Report production:

Don Goodman-Wilson | Erin Taylor | Gawain Lynch
Alexia Maddox | Melanie Uy | Nicole Weber

Note-takers:

Ben Balter | Tierny Cyren | Katie Delfin | Brian Douglas
Don Goodman-Wilson | Andrea Griffiths | Justin Hutchings
Mike Kavouras | Wilhelm Klopp | Mace Ojala | Paul Oliver

Lee Reilly | Erin Taylor | Nicole Weber | Henry Zhu

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

73

ABOUT THE
MAINTAINERATI
FOUNDATION

The Maintainerati Foundation supports the maintainers of the global
digital infrastructure to build healthy, productive, inclusive, and
sustainable communities. We act in collaboration with maintainers
and other relevant stakeholders to:

• Collate knowledge about running healthy, productive, inclusive and
sustainable communities that produce digital infrastructure.

• Package this knowledge in ways that maintainers can apply it to
build healthy, productive, inclusive, and sustainable communities.

• Distribute this knowledge broadly among the community.

• Evaluate our progress in consultation with the community and re-
frame our strategy and practices accordingly.

Stichting Maintainerati Foundation is a social benefit foundation
incorporated in The Netherlands, KvK number 76011690.

Contact Us
Website: https://maintainerati.org

Email: info@maintainerati.org

Twitter: @maintainerati

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

74

https:// https://maintainerati.org
mailto:info@maintainerati.org?subject=Berlin 2019 Event Report
https://twitter.com/maintainerati

EVENT SPONSORS
Thanks to our event sponsors for making Berlin 2019 possible!

BE
RL
IN

20
19

—
SE
SS
IO
N
N
O
TE
S

75

